The critical layer in pipe flow at high Reynolds number.
نویسنده
چکیده
We report the computation of a family of travelling wave solutions of pipe flow up to Re=75000. As in all lower branch solutions, streaks and rolls feature prominently in these solutions. For large Re, these solutions develop a critical layer away from the wall. Although the solutions are linearly unstable, the two unstable eigenvalues approach 0 as Re-->infinity at rates given by Re-0.41 and Re-0.87; surprisingly, the solutions become more stable as the flow becomes less viscous. The formation of the critical layer and other aspects of the Re-->infinity limit could be universal to lower branch solutions of shear flows. We give implementation details of the GMRES-hookstep and Arnoldi iterations used for computing these solutions and their spectra, while pointing out the new aspects of our method.
منابع مشابه
Swirl boundary layer and flow separation at the inlet of a rotating pipe
When a fluid enters a rotating circular pipe, an angular momentum or swirl boundary layer appears at the wall and interacts with the axial momentum boundary layer. In the centre of the pipe, the fluid is free of swirl and is accelerated due to boundary layer growth. Below a critical flow number, defined as the ratio of average axial velocity to circumferential velocity of the pipe, there is flo...
متن کاملStability analysis of stratified two-phase liquid-gas flow in a horizontal pipe
This study aimed at linear stability analysis of the stratified two-phase liquid-gas flow in a horizontal pipe. First, equations governing the linear stability of flow in each phase and boundary conditions were obtained. The governing equations were eigenvalue Orr Sommerfeld equations which are difficult and stiff problems to solve. After obtaining the velocity profiles of the gas and liquid ph...
متن کاملFluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid
In the present research, the laminar forced convective heat transfer and fluid flow characteristics for Al2O3-water nanofluid flowing in different bend (i.e., 180o and 90o) pipes have been investigated numerically in a three-dimensional computational domain using the finite volume technique. The effects of different pertinent parameters, such as the Reynolds number of the duct, volume fraction ...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملPhysical Modelling of Self-Aeration in a Cavitating Sudden PIPE Expansion Flow
Sudden pipe expansions have been known as efficient hydraulic energy dissipaters for a long time. The complex phenomenon of flow separation and velocity discontinuity at the interface of incoming jet and the recirculation flow, results in intensive shear and tensile rupture of the fluid and the associated destructive phenomenon of cavitation. This paper focuses on aeration in sudden pipe expans...
متن کاملPressure Calculation in the Flow Between Two Rotating Eccentric Cylinders at High Renolds Numbers
This paper reports the result of an analytical investigation of a steady, incompressible and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional case is far from reality because the gap between the cylinders is very small. Further, when their axes are displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 367 1888 شماره
صفحات -
تاریخ انتشار 2009